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ABSTRACT

Comparisons are made between the recently measured coexistence curves for ionic fluids
with the well-known features of such curves for non-ionic fluids. Both vapor-liquid curves
for pure fluids and liquid-liquid curves for mixtures are considered. Further comparisons are
then made with recently developed theory for each type of fluid.

INTRODUCTION

In recent years, the exact pattern of a coexistence curve very close to the
critical point has been widely studied experimentally and related to theory.
In contrast, the present work will emphasize simple patterns which are
followed to good approximation over a wide range of temperature and often
over the entire range from the critical temperature to the triple-point
temperature. It is the molecular properties controlling the wide-range behav-
ior which are important chemically. The details very close to the critical
point, while of theoretical interest, involve very small differences in chemical
potential which would be trivial for most chemical purposes. While each of
these patterns has been noted before empirically, it is interesting to compare
the behavior of an ionic fluid with that of a neutral-molecule fluid and to
make comparisons with theory in each case. Primary emphasis will be given
to vapor-liquid equilibria for pure fluids, but comparisons will be made to
liquid-liquid coexistence curves for both ionic and non-ionic systems.

* Dedicated to Professor Edgar F. Westrum, Jr., who carried out his Ph.D. research with me
in 19411944, on the occasion of his 70th birthday. It is a pleasure to participate in honoring
Professor Westrum for his greai coniributions to calorimetry.
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HISTORICAL SUMMARY

The first generalization was that of the “law of rectilinear diameters” of
Cailletet and Mathias in 1886 [1,2]. It is expressed in the equation

(o +p:,)/2=1+4(1-T)) | (1)

where p,, and p,, are the reduced densities of liquid and vapor, respectively,
T, is the reduced temperature and A is a substance-dependent constant.
While there is no exact and rigorous theoretical justification for this princi-
ple, and indeed, some theoretical basis exists for a small departure near the
critical point, there is very extensive empirical support for eqn. (1).

Shortly after the development of the Schrodinger quantum mechanics, it
was possible to put van der Waals’ “principle of corresponding states” on a
sound theoretical basis and to select a set of real fluids that should conform
accurately [3,4]. This set, the “simple fluids” Ar, Kr, Xe, CH,, does indeed
show good conformity, and from a study of this group Guggenheim [5]
demonstrated that their coexistence curve was represented by eqn. (1) with
A =3/4 and eqn. (2)

(pry— poy) =B(1-T,)F (2)

with B=7/2 and B =1/3. Equations (1) and (2) hold in good approxima-
tion over the entire liquid range of the simple fluids which extends to about
0.56 in T.. B is undoubtedly a substance-dependent parameter in general
and has larger values for fluids such as CO,, n-heptane, and H,O which still
conform quite well to eqns. (1) and (2) over the same range of 7, down to
about 0.6. One was tempted to hope that the exponent 8 =1/3 might be
exact in theory, but this does not appear to be true. Indeed, any mathemati-
cally analytical equation of state (EOS) can be expanded in a Taylor series
about the critical point, and one then finds the leading term for the
coexistence curve has the form of eqn. (2) but the exponent 1/2 [6]. Any
EOS which yields 8 =1/3 is non-analytic and gives divergences in certain
properties, such as C,, at the critical point. The modern theory for fluids
with short-range forces predicts limiting behavior near the critical point
following eqn. (2) with an irrational exponent = 0.325 [7]. But this theory
is valid only very near the critical point and offers no basis for the value
B =1/3 over the wide range of temperature.

Equations (1) and (2) can be combined to yield for the liquid and vapor,
respectively

p,=1+A40-T)+(B/2)(1-T)" (3)
p.,=1+A4(1-T)—(B/2)(1-T)" (4)

For liquid-liquid coexistence curves for two-component non-ionic systems,
one substitutes the mole fractions x” and x” for p,, and p,, in eqns. (1)—(4)
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and finds rather good agreement over a substantial range of reduced
temperature for 8 =1/3 [8]. Again, the constants 4 and B are system-
specific.

IONIC FLUIDS

It is only recently that any quantitative information has become available
for the coexistence curves for reasonably simple ionic fluids. For the alkali
halides, the temperatures are too high for measurement by currently avail-
able methods [9]. Buback and Franck [10] reported measurements for
NH,Cl which is clearly ionic (NH], CI7) in the liquid. The vapor at
subcritical densities is primarily NH, + HCI, rather than the ion pairs which
dominate alkali halide vapors. It is this difference for the vapor that reduces
the critical temperature to 882°C and makes quantitative measurements
feasible. In their published paper Buback and Franck do not offer an
equation for the coexistence curve, but in Buback’s thesis [11] it is reported
that the data fit eqns. (1)--(4) over the entire range of temperature with
B=1/2, A=1.23 and B=4.75. That 4 and B differ from the values 0.75
and 3.50 for simple fluids is not surprising, but the value 8 =1/2 is most
interesting since that is the value for a classical or analytical EOS.

Very recently de Lima, Schreiber and the present author [12,13] found a
clearly ionic liquid-liquid system, tetra-n-butylammonium picrate in chloro-
heptane with a critical point at 141.2°C (414 K) and 0.085 mole fraction
picrate. It follows eqns. (1)-(4) (with reduced mole fractions of the picrate
replacing reduced densities) and with 8 =1/2, 4 =2.2 and B=6.1. Agree-
ment is good over an 80° C temperature range down to the triple point with
the solid picrate. The value of 1/2 for B is the result of particular interest,
although the conformity to the simple equation over a wide range of
temperature is also significant.

THEORY FOR NON-IONIC FLUIDS

It would seem desirable to transform eqns. (1)—(4) to a general equation
of state. As a direct transformation, however, this is not possible. Rather,
one must make the calculation in the reverse direction from EOS to
coexistence curve. Indeed, there is extensive material in the literature con-
cerning complex equations of state which yield coexistence curves approxi-
mating eqns. (1)-(4). The complexity of these equations makes further
interpretation at the molecular level very difficult, but there are recent
Monte Carlo simulations for the Lennard-Jones (LJ) model [14-16] that
yield a coexistence curve which can be compared directly with experimental
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Fig. 1. Reduced coexistence curve for argon (solid line) [17] and points for Monte Carlo
calculations for the Lennard—-Jones potential [14]. On the scale of the figure, the curve for
argon is indistinguishable from that for eqns. (1)-(4) with the parameters 8=1/3, A=3/4
and B=17/2.

data. This model assumes an R™'? repulsive potential and an R~° attractive
potential.

The most recent calculation and the one best determining the LJ coexis-
tence curve is that of Panagiotopoulos [14]. The calculated vapor and liquid
densities are shown as circles in Fig. 1, along with a solid curve for the
experimental measurements for argon [17]. The agreement is well within the
statistical uncertainties of the Monte Carlo calculations. This pattern con-
forms quite clearly to 8 =1/3 over the entire temperature range and to the
values A = 3/4, B =7 /2 selected by Guggenheim for eqns. (1)—(4) as stated
above.

THEORY FOR LONG-RANGE FORCES

While there have been efforts to derive the coexistence curve theoretically
for a model ionic fluid [18,19], these are too crude for meaningful compari-
son with eqns. (1)—(4). Other models, with all particles of the same type,
have been studied with interparticle potentials of longer range than the R ¢
function applicable to real neutral molecules. Lebowitz and Penrose [20]
showed rigorously that for very long-range potentials the van der Waals
attractive term —ap? for the pressure is correct (a being a constant). For the
compressibility factor, this becomes

Z=P/pRT=Z"P —ap/RT (5)

where Z™P is the function arising from short-range repulsive forces. Assum-
ing that Z™P is an analytic function of p and T, the full equation is analytic
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and the coexistence curve must show 8=1/2 in the limit as the critical
point is approached. Other properties show classical behavior, e.g. C,
remains finite, etc.

For interparticle potentials depending on R™" with n <6, there is less
complete theory [21,22] which indicates classical behavior for n less than 4.5
in three-dimensional space. The interionic forces have n =1, which is
<< 4.5, but there is substantial ion-pairing and clustering near the critical
point. Hence, no unambiguous conclusion can be drawn, but the potential
between an ion and a rotating dipole has n =4, which is < 4.5. Hence, a
large component of the interparticle forces in a near-critical ionic system is
long range with respect to the 4.5 dividing value. Thus, it is not surprising to
find that the exponent 8 =1/2 appears to pertain to the two ionic systems
which have been studied. These measurements do not preclude a departure
from the 8 =1/2 pattern very close to the critical point.

For the case of hard spheres, Z™ has been evaluated exactly for low
densities and by Monte Carlo or molecular dynamics simulations for high
densities [23]. Carnahan and Starling [24] showed that a relatively simple
function fits these results quite accurately

T 3
ZP=(1+y+y*—y’)/(1-y) (6)
y=m0%/6 (7)
Here, o is the hard sphere diameter. The substitution of this expression into

eqn. (5) yields an equation of state which can be designated CSvdW
(Carnahan-Starling—van der Waals)

Z=(1+y+y*=»*)/(1-y) —ap/RT (8)

Fig. 2. Reduced coexistence curves for the Carnahan-Starling-van der Waals (CSvdW)
model (solid line) and for argon (dashed line) and measured points for NH,Cl [10,11]. The
CSvdW curve is very nearly the same as that for eqns. (1)-(4) with the parameters 8 =1/2,
A=1.25and B=4.90.
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The resulting coexistence curve is shown in Fig. 2 as a solid line. It is
practically indistinguishable from the curve of eqns. (1)-(4) with 4 = 1.25
and B =4.90. The measured points for NH,Cl, shown as circles, follow
almost the same pattern. The dashed curve for argon has a distinctly
different pattern corresponding to f=1/3 instead of §=1/2 and to
smaller values of 4 and B.

While the agreement of NH,Cl properties with the CSvdW equation is
close for the coexistence curve, this is not general. Indeed, the critical
compressibility factor Z_ is 0.359 for CSvdW, whereas for NH,Cl it is 0.95
on the basis of two moles of fluid per mole NH,Cl. This corresponds to the
state of the vapor which is NH, + HCI at low density. The density of fluid
NH,CI has not been measured except on the coexistence curve.

DISCUSSION

For non-ionic fluids, the pattern very near the critical point defined by
B =0.325 = 1/3 arises from very long-range fluctuations. The appearance of
the B = 1/3 pattern at lower temperatures must arise from a different source
since the Monte Carlo calculations were made for a limited number of
particles (300 or 500) and do not include fluctuations of longer range. Also,
the Ising lattice, which has the same near-critical limiting behavior (8=
0.325), shows quite a different pattern at lower temperatures [25], corre-
sponding to B8 < 0.3. This is shown in Fig. 3 where the third power of
(p,— p,) or the magnetization M 1is shown as a function of reduced
temperature. From eqn. (2) one notes that if 8 =1/3 one obtains a straight
line on this plot. The constants are adjusted to yield the same ordinate at

)" or (const.) M3
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Fig. 3. Comparison of Ising lattice properties with those of Ar and NH,Cl. Although both Ar
and Ising show little curvature and finite slope near the critical point, in agreement with
B =1/3, their patterns over a wide range of temperature are quite different.
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T. = 0.6 for each curve in Fig. 3. The line for Ar is nearly straight over the
entire range of reduced temperature. For the Ising lattice, the line becomes
straight near the critical point which indicates the same 8 =1/3 limiting
behavior, but the pattern away from the critical region is very different from
Ar. Thus, the Ising lattice does not conform to eqn. (2), and if one defines a
local B, it is much smaller than 1/3.

It appears that the differences in coexistence curve (or lattice magnetiza-
tion) pattern are related to the range of interparticle forces in both near-crit-
ical and wide-ranging regions. In the former the essential phenomenon is
long-range fluctuations and there are just the two patterns, 8=0.325 or
B =1/2, as discussed above. Over a wide range of temperature we see three
patterns in Fig. 3. For R™® potentials (Ar) one has 8 =1/3 over the entire
range of T,. The Ising lattice has only nearest neighbor forces, which are
shorter in range, and departs from the Ar pattern in the direction of
B <1/3. NH,CI shows a departure in the opposite direction which agrees
with its longer-range interparticle potential.

On a strictly quantitative basis, the conformity of many systems (but not
the Ising lattice) to eqns. (1)—(4) is only approximate over the long range of
temperature. Also, there is a great need for further theory and simulation
calculations in order to better understand ionic fluids. Nevertheless, this
clear trend of effective B with range of interparticle potential is very
interesting and should be included in one’s thinking about phase separation
in fluids.
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